

UT-D680xE-CN 系列串口服务器使用说明

UT-D6804E-CN • UT-D6808E-CN • UT-D6804MTE-CN • UT-D6808MTE-CN•

UT-D6804CMT-SW-CN • UT-D6808CMT-SW-CN

目录

目	录	2
前	[音	4
	目标读者	4
	本书约定	
1	概述	5
	1.1 产品简介	5
	1.2 产品特性	
	1.3 产品型号	
2	硬件描述	
_		
	2.1 电源接口及电压	
	2.2 串口管脚定义	
3	Web 页面	9
	3.1 Web 页面登录	9
	3.2 Web 系统首页	9
	3.3 Web 页面组成	10
4	基本设置	11
	4.1 网口设置	11
	4.2 串口设置	12
	4.3 模式设置	13
	4.3.1 VCOM 模式	.13
	4.3.2 TCP Server 模式	
	4.3.3 TCP Client 模式	
	4.3.4 UDP Client 模式	
	4.3.5 Modbus RTU Slave 模式	
	4.3.6 Modbus RTU Master 模式	
	4.3.7 MCP 模式	
	4.3.8 Reverse Telnet 模式	
	4.3.9 MQTT 模式	
	4.4	
	4.6 网络控制	
	4.7 安全设置	
	4.8 用户设置	
	4.9 系统日志	
5	故障排除说明	

6 Vcom 软件说明	32
6.1 remote devices Management	. 32
6.1.1 设备查询	
6.1.2 删除串口设备信息	
6.1.3 登陆设备	
6.1.4 配置信息	34
6.1.5 更改 IP	37
6.1.6 退出登陆	38
6.1.7 导入配置	38
6.1.8 导出配置	39
6.1.9 文件升级	. 40
6.1.10 跳转网页登录	. 40
6.2 COM Mapping	41
6.2.1 创建虚拟串口	. 41
6.2.2 删除虚拟串口	. 42
6.2.3 修改虚拟串口	. 42
6.2.4 启用虚拟串口	. 42
6.2.5 禁用虚拟串口	. 42
6.2.6 导入虚拟串口列表	. 43
6.2.7 导出虚拟串口列表	. 43
6.3 Options	44
6.4 About	44
6.5 Exit	45

前言

目标读者

本手册适用于负责安装、配置或维护网络的安装人员和系统管理员。本手册假定您了解所有网络使用的传输和管理协议。

本手册也假定您熟知与组网有关的网络设备、协议和接口的专业术语、理论原理、实践技能以及特定专业知识。同时您还必须有图形用户界面、命令行界面、简单网络管理协议和 Web 浏览器的工作经验。

本书约定

本手册采用以下约定方式。

GUI 约定	描述
1000 说明	对操作内容的描述,进行必要的补充和说明。
1注意	提醒操作中应注意的事项,不当的操作可能会导致数据丢失或者设 备损坏。

1 概述

1.1 产品简介

UT-D68xxE-CN 是一款采用纯国产 RISC-V 架构主控的串口服务器,设备采用导轨式安装方式,支持串行终端到 TCP/IP 之间数据转换,内部集成 TCP/IP 协议栈,实现 RS-232/485/422 串口与 TCP/IP 网络接口的数据双向透明传输,使得串口设备能够具备联网功能。

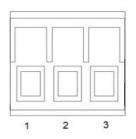
同时它具有较全面的 Modbus 网关功能,支持 Modbus TCP(主)与 Modbus RTU(从)互转、Modbus RTU(主)与 Modbus TCP(从)互转、Modbus RTU(主)与 Modbus RTU(从),可配置为存储型或非存储型的通信方式。

设备提供中英文 WEB 界面,有设置向导,易于操作。同时可通过配置工具对设备集中配置管理,广泛用于工业控制,设备自动化,物联网,环境监控,智能交通,动环监控等领域。

1.2 产品特性

- 支持 12-48VDC 电源输入,适用不同现场供电要求;
- 串口支持 RS232\RS485\RS422, 通过软切换来实现;
- 支持 2 路 10/100M 以太网通信接口;
- 支持 Reset 键恢复出厂设置;
- 支持硬件外部看门狗;
- 支持波特率范围 300-921600bps, 支持自定义波特率;
- 支持 MCP 和 VCOM 两种虚拟串口模式;
- 支持 ARP、IP、ICMP、UDP、TCP、HTTP、DHCP、MODBUS 等协议;
- 支持 TCP Server、TCP/UDP Client、MCP&VCOM、Modbus Server/Client、MQTT、Http Client 工作模式;
- 支持 Xmodem 1K 文件传输;
- 支持-40℃~85℃宽温工作温度;
- 支持 Web 或者 VistaComs 上位机配置和升级:
- 所有配置即时生效,无需重启设备。

1.3 产品型号


产品型号	网口	串口	串口类型		
	数量	数量	RJ45	3.81 端子	5.08 端子
			RS232/485/422	RS485/422	RS485/232
UT-D6804E-CN	2	4	4	-	-
UT-D6808E-CN	2	8	8	-	-
UT-D6804MTE-CN	2	4	-	4	-
UT-D6808MTE-CN	2	8	-	8	-
UT-D6804CMT-SW-CN	2	4	-	-	4
UT-D6808CMT-SW-CN	2	8	-	-	8

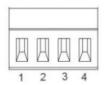
2 硬件描述

2.1 电源接口及电压

采用 3Pin 带锁的 5.08 端子供电方式,内置有防反接保护,避免正负接错损坏设备,端子定义详见外壳丝印。电源输入范围: 12-48VDC

5.08 接线端子	电源接口
1	接大地 (PGND)
2	电源负极 V-
3	电源正极 V+

2.2 串口管脚定义


适用 UT-D6804E-CN、UT-D6808E-CN:

RJ45	RS-232	RS-485	RS-422
1	TXD	DATA+	TXD+
2	RXD	DATA-	TXD-
3	RTS		RXD+
4	CTS		RXD-
5	DSR		
6	GND	GND	GND
7	DTR		
8			

适用 UT-D6804MTE-CN、UT-D6808MTE-CN:

3.81 端子	RS-485	RS-422	说明
1	T/R+	TX+	发送/接收正
2	T/R-	TX-	发送/接收负
3		RX+	接收正
4		RX-	接收负

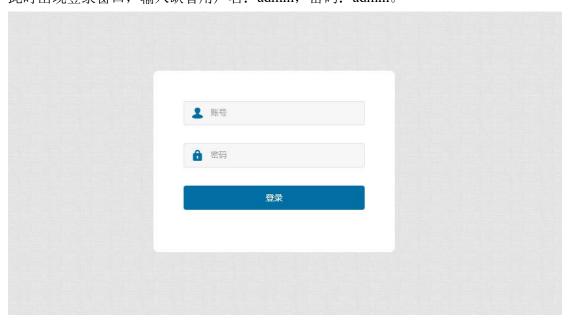
适用 UT-D6804CMT-SW-CN、UT-D6808CMT-SW-CN:

5.08 端子	RS-232	RS-485	说明
1	TX	A	发送/485A
2	RX	В	接收/485B
3	GND	GND	信号地

2.3 以太网接口定义

10/100BaseT(X)以太网接口位于设备的后面板,接口类型为 RJ45,自适应网口速率,也可以固定网口速率,其引脚定义如图所示:

RJ45	EIA/TIA 568B	定义	说明
1	橙白	TX+	发送正
2	橙	TX-	发送负
3	绿白	RX+	接收正
4	蓝	Data+	双向数据+
5	蓝白	Data-	双向数据-
6	绿	RX-	接收负
7	棕白	Data+	双向数据+
8	棕	Data-	双向数据-



3 Web 页面

3.1 Web页面登录

用户可通过打开 Web 浏览器,输入串口服务器 IP 地址。 网口 1 的默认 IP 为: 192.168.1.125,网口 2 的默认 IP 为: 192.168.0.125。 此时出现登录窗口,输入缺省用户名: admin,密码: admin。

注:

登录串口服务器时, PC 本地需要设置一个与串口服务器同网段的 IP。

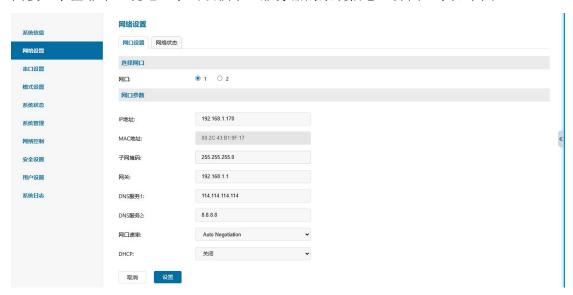
3.2 Web系统首页

设备 Web 首页如下图所示,包含设备信息、电源状态、系统时间、企业信息、CPU 使用率和内存使用率。

3.3 Web页面组成

Web 页面由系统信息,网络设置,串口设置,模式设置,系统状态,系统管理,网络控制,安全设置,用户设置,系统日志,帮助文档组成。如下表所示。

菜单项	子菜单	说明
系统信息	系统信息	展示设备信息、电源状态、系统时间、企业信息、CPU
		使用率和内存使用率。
网络设置	网口参数	设备型号、IP 地址、子网掩码、DHCP 等设置
串口设置	串口设置	串口类型及基本参数的设置
模式设置	工作模式	设备工作模式选择
系统状态	系统状态信息	网络状态、串口状态、Modbus 从站表显示
	保存重启	重启设备
系统管理	恢复出厂	恢复出厂设置
	升级固件	升级固件
	无数据/定时重	无数据重启:没有任何通信数据时,设定时间自动重
	启	启
		每天重启:设置每天某个时间点重启
	导入导出	配置文件导入和导出功能
网络控制	SNMP 设置	SNMP 管理功能,目前仅支持 V1
	SNTP 设置	SNTP 网络对时功能
安全设置	IP 过滤设置	在过滤范围内的 IP 段将无法通过 WEB 访问服务器
用户设置	修改密码	修改用户密码
系统日志	日志参数	开启或关闭调试、故障日志
帮助文档	帮助文档(页面	鼠标移至右侧任意地方,即弹出帮助文档,针对当前
	右侧隐藏)	页面的每个参数进行说明



4 基本设置

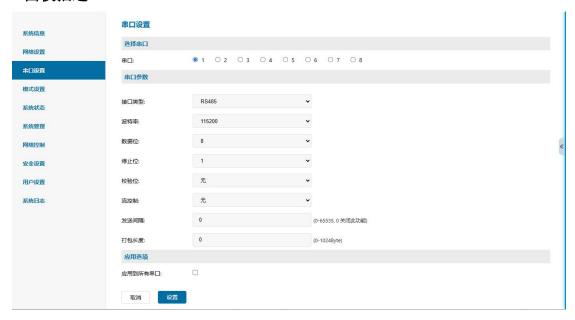
4.1 网口设置

1.面板描述

面板显示区非常直观地显示出该款串口服务器的系统信息。界面显示如下图:

2.关键字说明

IP 地址	设备 IP 地址
MAC 地址	仅展示,不支持修改
子网掩码	设备子网掩码
网关	设备网关地址
DNS 服务 1	主 DNS 地址
DNS 服务 2	次 DNS 地址
网口速率	自动协商或者固定速率
DHCP	是否启用 DHCP 获取 IP 地址,默认 disable


3.操作步骤说明

步骤一	单击导航栏中"网口设置"界面。	
步骤二	用户修改相应配置后,点击"设置"。	
步骤三	保存重启。	

4.2 串口设置

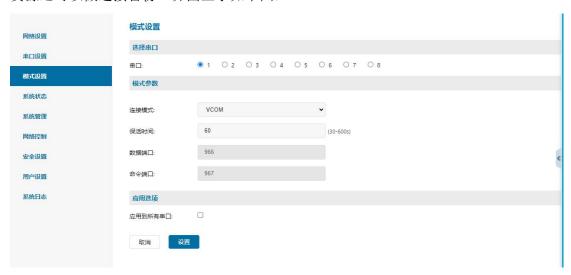
1.面板描述

2.关键字说明

串口选择	选择串口
接口类型	串口接口类型选择,RS-232/RS485/RS422
波特率	300~921600,或者选择自定义
数据位	数据位,可选择 5/6/7/8
停止位	停止位,可选择 1/1.5/2
校验位	校验位,可选择 Odd/Even/Mark/Space,默认无
流控制	流量控制,可选择 None、RTS/CTS
发送间隔	数据打包间隔时间,打包规则内的延时时间
打包长度	数据打包长度,如果串口接收到小于此设置长度的数据帧,将延时间隔
	时间等待是否后续还有数据到来

3.操作步骤说明

步骤一	单击导航栏中"串口设置"界面。
步骤二	用户可修改相应串口参数配置,点击"设置"即可。
步骤三	无需重启,即时生效。



4.3 模式设置

4.3.1 VCOM模式

1.面板描述

TCP/IP 虚拟串口模式工作在 windows 系统环境下,通过驱动程序把串口服务器上的端口映射成为本地主机的虚拟 COM 口,使原本基于 COM 口操作的上端软件无须做任何修改就像适用本地真实 COM 口一样,驱动程序最多可以支持扩展到 COM256。并且每个独立的端口都可支持多会话数,使得对串口设备的监控更加灵活方便,多条连接资源还可以做连接备份。界面显示如下图:

2.关键字说明

串口选择	选择串口
连接模式	选择工作模式: VCOM
保活时间	连接生效后设备将在此设置值的时间间隔发送保活探测报文以检测
	连接是否处于有效状态
数据端口	不可修改, 按默认即可
命令端口	不可修改, 按默认即可

3.操作步骤说明

步骤一	单击导航栏中"模式设置"界面。
步骤二	用户设置工作模式为 VCOM 模式,点击"设置"即可。
步骤三	无需重启,即时生效。

4.3.2 TCP Server模式

1.面板描述

在 TCP 服务端模式下, 串口服务器被分配一个 IP 端口号,被动地等待主机连接。

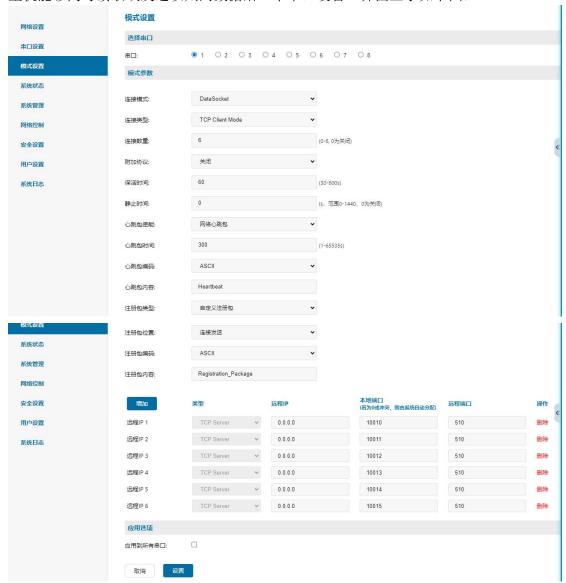
当主机发起连接请求并与串口服务器建立连接后,主机即可通过网络连接和串口实现双向透明数据传输。TCP 服务端模式同时支持最大6个会话连接,使得多台主机能够同时读取或发送以太网数据给一个串口设备。界面显示如下图:

2.关键字说明

串口选择	选择串口
连接模式	选择工作模式为 DataSocket
连接类型	选择 TCP Server Mode
连接数量	客户端最大连接数量,0-6
附加协议	可选类 RFC2217 协议
本地端口	监听端口号
保活时间	连接生效后设备将在此设置值的时间间隔发送保活探测报文以检测
	连接是否处于有效状态
静止时间	静止时间过后,自动断开连接,默认为0关闭

3.操作步骤说明

步骤一	单击导航栏中"模式设置"界面。
步骤二	用户选择连接模式为 DataSocket,连接类型为 TCP Server Mode,设置
	监听端口,点击"设置"即可。
步骤三	无需重启,即时生效。


4.3.3 TCP Client模式

1.面板描述

在 TCP 客户端模式下,串口服务器能够在串口数据到达时主动与用户指定的主机 建立网络连接,当数据传输完毕后,串口服务器将根据保活时间/空闲超时时间等参数 自动关闭网络连接。同样地,TCP 客户端模式可同时支持最大8个会话连接,使多台

主机能够同时读取或发送以太网数据给一个串口设备。界面显示如下图:

2.关键字说明

串口选择	选择串口
连接模式	选择工作模式为 DataSocket
连接类型	选择 TCP Client Mode
连接数量	客户端最大连接数量,0-6
附加协议	可选类 RFC2217 协议
保活时间	连接生效后设备将在此设置值的时间间隔发送保活探测报文以检测
	连接是否处于有效状态
静止时间	静止时间过后,自动断开连接,默认为0关闭
心跳包使能	关闭心跳包:不使能
	网络心跳包: 定时向服务端发送心跳包内容
心跳包时间	心跳包发送间隔,1-65535s

心跳包编码	编码格式: Ascii 或 Hex
心跳包内容	自定义心跳包内容。
注册包类型	注册包关闭: 不使能
	MAC 注册包: 向服务端发送 MAC 地址
	自定义注册包: 向服务端发送自定义注册包
注册包位置	连接发送: 在与服务器建立连接时发送
	数据携带发送: 在每个数据包最前端接入注册包数据
	全注册:包含以上两种情况
注册包编码	编码格式: Ascii 或 Hex
注册包内容	自定义注册包内容。
远程 IP/端口	设置连接的目标主机的 IP 地址及端口号

3.操作步骤说明

步骤一	单击导航栏中"模式设置"界面。
步骤二	用户选择连接模式为 DataSocket,连接类型为 TCP Client Mode。
步骤三	设置服务端的 IP 地址及端口号,点击"设置"即可。
步骤四	无需重启,即时生效。

4.3.4 UDP Client模式

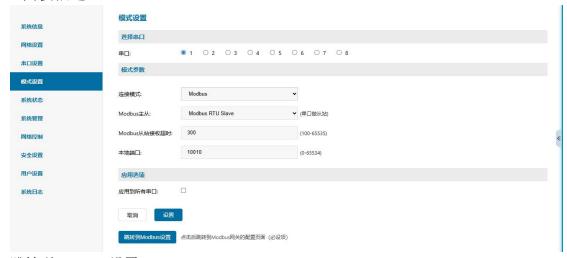
1.面板描述

在 UDP 模式下,界面显示如下图:

2.关键字说明

., ., . , . , .	
串口选择	选择串口
连接模式	选择工作模式为 DataSocket

连接类型	选择 UDP Client Mode
连接数量	客户端最大连接数量,0-6
附加协议	可选类 RFC2217 协议
远程 IP	设置连接的目标主机的 IP 地址及端口号


3.操作步骤说明

步骤一	单击导航栏中"模式设置"界面。
步骤二	用户选择连接模式为 DataSocket,连接类型为 UDP Client Mode。
步骤三	设置服务端的 IP 地址及端口号,点击"设置"即可。
步骤四	无需重启,即时生效。

4.3.5 Modbus RTU Slave模式

Modbus RTU Slave 是遵循 Modbus RTU 协议规范的从站设备,它响应主站(Master)发来的请求并返回相应的数据,该模式指的是 RTU(串口端)做从站,TCP(网络端)做主站,界面显示如下图:

1.面板描述

跳转到 Modbus 设置:

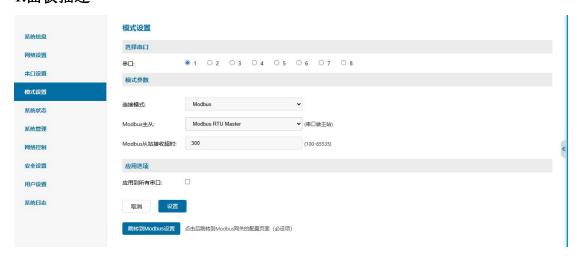
增加地址转换规则:

Modbus RTU Slave 模式,只能添加类型为"串口地址"的转换规则。

2.关键字说明

串口选择	选择串口
连接模式	选择工作模式为 Modbus
Modbus 主从	选择 Modbus RTU Slave
Modbus 从站	从站接收超时时间
接收超时	
本地端口	当前端口的监听端口号,仅当前端口生效。
汇聚监听端	全局监听端口,所有端口通用,范围值 1-65535, 默认为 502。
口	
异常/超时响	当从站响应超时,回复主站的数据内容。
应	Modbus 故障码: 回复 83 01 故障码,直接报错。
	根据查询内容填充 0x00:数据部分全部用 00 填充,不报错。
	根据查询内容填充 0xFF:数据部分全部用 FF 填充,不报错。

	关闭:不回复,直接报错。
数据提前采	此功能开启后,串口服务器会在数据有效期以后到数据提前采
集时间	集时间之前这段时间区间内,提前把从站数据准备好,以供
	Modbus 主站查询,便于快速响应数据。
数据有效期	在多个上位机同时查询同一条物理串口总线上同一台下位机的
	同一个数据码时,会占用物理总线上的资源时间片,而合理配
	置数据有效期能大大减轻这种资源时间片的占用情况
异常次数	此参数需配合"连续跳过异常周期"使用。当出现下位机响应
	数据超时、返回数据 CRC 校验失败、返回数据长度不符等情况
	时,皆判定为数据异常。
连续异常跳	当下位机返回的数据异常且连续异常次数超过"异常次数"规
过周期	定的值时,将在特定时间内停止查询该下位机的此数据码,从
	而减少该物理总线上资源时间片的占用。
类型	串口地址(Slave 模式用)和 IP 地址(Master 模式用),两种
	类型可选,同一串口不可同时应用两种模式
从机地址由	ID 号设置, 范围 1-247
从机地址偏	增加值范围为-247 到 247,可以为负数,对地址由 ID 范围进行
移量	相加
目标	Slave 模式: 串口, Master 模式: IP 地址+端口。


3.操作步骤说明

步骤一	单击导航栏中"模式设置"界面。	
步骤二	用户选择连接模式为 Modbus,Modbus 主从选择 Modbus RTU Slave,	
	设置监听端口,先点击"设置"后,再点击"跳转到 Modbus 设置"	
	进行参数配置。	
步骤三	无需重启,即时生效。	

4.3.6 Modbus RTU Master模式

Modbus RTU Master 是遵循 Modbus RTU 协议规范的主站设备,负责发起通信请求并管理网络上的从站设备,该模式指的是 RTU(串口端)做主站,TCP(网络端)做从站,界面显示如下图:

1.面板描述

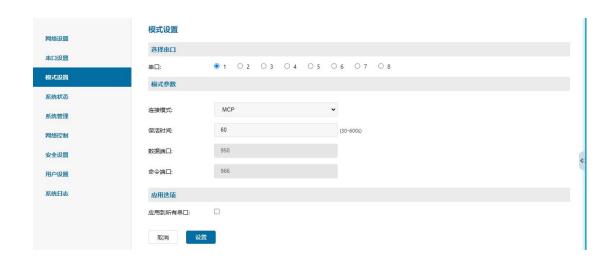
跳转到 Modbus 设置: 界面和参数说明参考上述 Modbus RTU Slave,不再重复。增加地址转换规则:

Modbus RTU Master 模式,只能添加类型为"IP地址"的转换规则。

2.关键字说明

串口选择	选择串口
连接模式	选择工作模式为 Modbus
连接类型	选择 Modbus RTU Master
Modbus 从站	从站接收超时时间
接收超时	

3.操作步骤说明


步骤一	单击导航栏中"模式设置"界面。
步骤二	用户选择连接模式为Modbus,Modbus主从选择Modbus RTU Master,
	先点击"设置"后,再点击"跳转到 Modbus 设置"进行参数配置。
步骤三	无需重启,即时生效。

4.3.7 MCP模式

1.面板描述

TCP/IP 虚拟串口模式工作在 windows 系统环境下,通过驱动程序把串口服务器上的端口映射成为本地主机的虚拟 COM 口,使原本基于 COM 口操作的上端软件无须做任何修改就像适用本地真实 COM 口一样,驱动程序最多可以支持扩展到 COM256。并且每个独立的端口都可支持多会话数,使得对串口设备的监控更加灵活方便,多条连接资源还可以做连接备份。界面显示如下图:

2.关键字说明

串口选择	选择串口	
连接模式	选择工作模式: MCP	
保活时间	连接生效后设备将在此设置值的时间间隔发送保活探测报文以检测	
	连接是否处于有效状态	
数据端口	不可修改, 按默认即可	
命令端口	不可修改, 按默认即可	

3.操作步骤说明

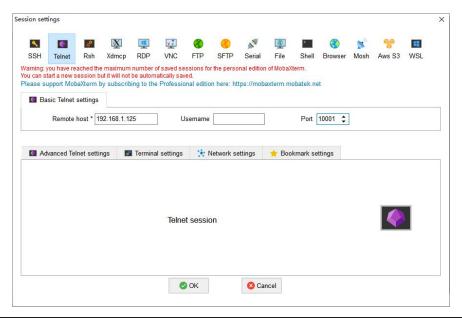
步骤一	单击导航栏中"模式设置"界面。
步骤二	用户设置工作模式为 MCP 模式,点击"设置"即可。
步骤三	无需重启,即时生效。

4.3.8 Reverse Telnet模式

在反向 telnet 模式中, telnet 会话从网络发起。串行设备等待网络主机发起连接。通常情况下, 反向 telnet 模式用于控制台服务器应用程序, 其中网络主机 telnet 到设备的控制台端口进行配置或维护。TCP 服务器是类似的, 因为它涉及作为服务器的串行设备。

1.面板描述

反向 telnet 模式界面显示如下图:


2.关键字说明

工作模式	工作模式选项
连接数量	支持主机的最大连接数量
保活时间	连接生效后设备将在此设置值的时间间隔发送保活探测报文以
	检测连接是否处于有效状态
本地端口	设置本地端口号
回车转换	[回车]表示服务器从串口收到"回车",照原样传向以太网;
	[换行]表示服务器从串口收到"回车",将"回车"变为"换行"
	传向以太网;
	[回车-换行]表示服务器从串口收到"回车",将"回车"变为
	"回车"和"换行"传向以太网。
应用到所有串口	将此设置应用到所有串口,仅本地端口号会变化。

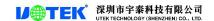
3.操作说明

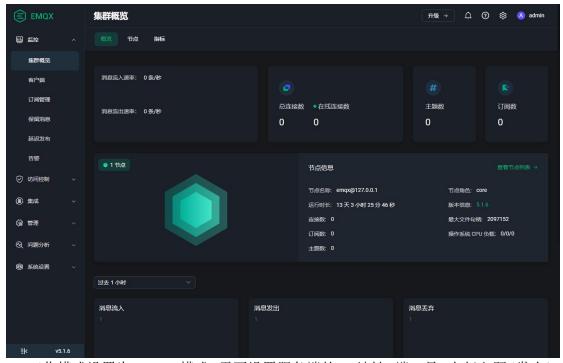
- 1、将模式设置为反向 telnet 模式,并设置为 RS232。
- 2、使用 RS232 线缆将串口服务器的串口和控制台端口连接好。
- 3、Windows 通过"开始-运行-cmd",在命令提示符下,输入 telnet <串口服务器的 IP>10001 (例如 telnet 192.168.1.125 10001)。
- 4、进入设备的 console 口后,如果消息没正常显示,您可能需要调整串口服务器上的 CR-LF 映射。

4.3.9 MQTT模式

1.面板描述

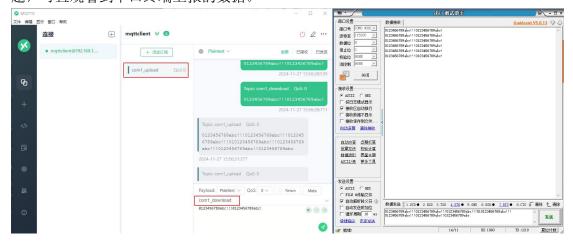
该模式为 MQTT 客户端,需连接 MQTT 服务端,主动发起事务请求,界面显示如下图:


2.关键字说明


工作模式	工作模式选项
服务器地址	设置服务器地址
服务器端口	设置服务器端口
MQTT 用户名	访问 MQTT 服务器用户名
MQTT 密码	访问 MQTT 服务器密码
客户端 ID	设置设备 ID
上行主题	设置发布主题
下行主题	设置订阅主题
服务质量	Qos0、Qos1、Qos2
保活时间	连接生效后设备将在此设置值的时间间隔发送保活探测报文
	以检测连接是否处于有效状态
MQTT 版本	3.1/3.1.1
透传方式	默认透传或者定制 json 上报

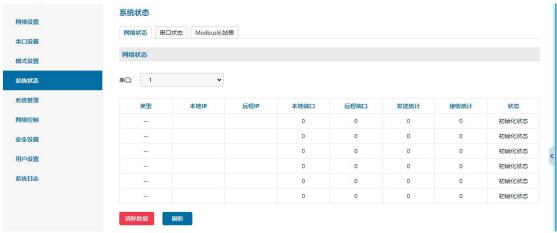
3.操作说明

1、电脑部署 MQTT 服务端,例如 emqx。



- 2、工作模式设置为 MQTT 模式, 需要设置服务端的 IP 地址、端口号、上行主题(发布)、下行主题(订阅)。
- 3、工作模式设置为 MQTT 模式,重启设备后。服务器端可以看到客户端已成功连接。

4、PC 上再打开一个 MQTT 客户端,例如 MQTTX,连接服务端,通过设置发布订阅主题,可直观看到串口终端上报的数据。

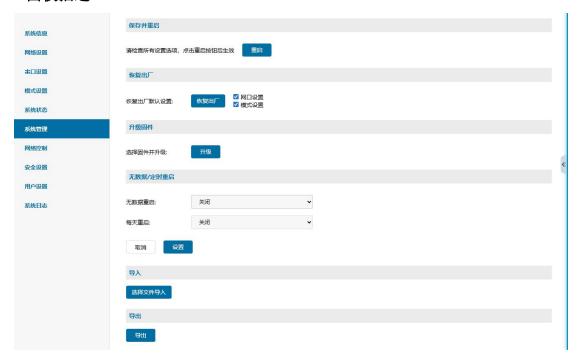


4.4 系统状态

1.面板描述

网络状态:显示每个串口当前网络连接状态

串口状态:显示每个串口收发数据统计


Modbus 从站表:显示每个真实 ID 和虚拟 ID 的对应关系,上位机、下位机应答时间。

4.5 系统管理

1.面板描述

2.关键字说明

无数据重启	没有任何通信数据时,设定时间自动重启
每天重启	设置每天某个时间点重启
导入	导入配置文件,重启生效
导出	将当前配置导出,包含网络、串口、模式等配置

4.6 网络控制

1.面板描述

SNMP 设置: 开启和关闭 SNMP 功能,目前仅支持 V1 版本。

SNTP 设置: 网络对时功能,可以自定义 SNTP 服务器。

4.7 安全设置

1.面板描述

IP 过滤设置,在过滤范围内的 IP 段将无法通过 WEB 访问服务器,界面显示如下图:

4.8 用户设置

修改当前用户的密码,界面显示如下图:

1.面板描述

4.9 系统日志

1.面板描述

2.关键字说明

网络调试	调试日志,默认关闭。
网络故障	故障日志,默认开启。
HEX 日志	可选择 Modbus RTU 或 Modbus TCP 日志,默认关闭。
串口通讯日志	每路串口下的通信日志,默认关闭
日志输出位置	串口: 使用设备自带的 console 口输出日志信息
	UDP: 使用 UDP 协议输出日志信息,需输入 IP 和端口号
ACK 应答时间	显示 ACK 应答时间
设备启动计数	设备重启次数,每重启一次加1
网络配置文件加载报错	仅查看,不可更改
计数	
硬件参数加载错误计数	仅查看,不可更改
警告信息	仅查看,不可更改

5 故障排除说明

该操作可使界面回到登录界面。界面显示如下图:

a) 运行 search 搜索不到串口服务器的 IP 地址

- 1、首先检查物理连接是或正常,网线(区分交叉线和直连线)和电源是否有接,观察电源指示灯,LAN 灯,ACT(接在 10M 网络时,此灯不亮,100M 时才亮)。
- 2、主机网卡是否可用,能不能与其它本地其它主机通讯。
- 3、关闭一切能屏蔽广播包的工具和软件(不要开启系统自带的防火墙)。
- 4、在通过浏览器进入配置,设置 IP 的时候突然异常断开比如:断电,之后就没能搜索到设备,通过 console 口进入配置重设 IP。

b) 不能打开串口

- 1、确保网络工作状态的正常,能否 ping 通服务器。
- 2、查看工作状态看端口是否被占用。
- 3、如果是用 VCOM mode 查看 "VCOM Utility"的配置是否正确。
- 4、到注册表中删除相应的 COM 口重新映射。

c) 不能收发数据

- 1、确保能够正常打开串口。
- 2、观察系统灯是快闪还是慢闪,快闪为有数据收发,如没有快闪检查串口与上端网络的连接,和底端串口设备检查接线。

d) 忘记之前设置的密码

1、通过按住"reset"按钮 5 秒恢复出厂设置。

e) 收发数据是乱码

- 1、检查接线是否正确,我们 485 的接线是 1A+, 2B-。
- 2、检查线距离是否有超过标准距离和线的质量(也可通过加长线收发器或者光隔)。
- 3、检查设置的波特率是否与底端设备匹配。
- 4、脱离客户的上端软件,用网络或者串口调试助手能不能收到正常的数据,如果能收到正常的数据,可能问题与打包机制有关可以到"Port Configure"中设置打包的长度和打包的等待时间。
- f) 串口通讯服务器作为拨号服务器,连接已正常建立,但是客户端的 PC 用 IE 在地址栏目输入域名打开网页时,总不能打开;在地址栏目输入 IP 地址时,能打开
- 1、串口通讯服务器中设置的 DNS 是否真实有效。
- g) 串口通讯服务器作为拨号服务器,连接已正常建立,但是客户端的 PC 用 IE 打开复杂网页或下载大的文件时,经常打开或下载不全,甚至失败

- 1、检查串口通讯服务器设置中的[串口],确定 [流量控制] 与 MODEM 的流量控制是否一致。通常 MODEM 的流量控制为 RTS/CTS(硬件流控)。
- 2、MODEM间协商的DCE速率过低,重新再拨号。

i) 作为 TCP server 时不能被连接

- 1、确认没有别的 PC 与串口通讯服务器的相应端口有连接: 进入串口通讯服务器的[统计]查看[活动 TCP 信息]。
- 2、[详细参数]中的[认证]是否为[none]。

如果以上方式均不能解决您的问题,请与厂家联系。

6 Vcom软件说明

6.1 remote devices Management

6.1.1 设备查询

连接好设备后,启动软件"VCOM"(如下图 1),选择 remote devices Management —Add Device,弹出查找所在网络设备的 IP 的查找界面;如图 2 所示,选择"Search"按钮,可以查找所在网络的所有设备的 IP 地址及基本信息;如图 3 所示,再选择图 3 中"cancel",以及图 2 中"ok"按钮,即可在 VCOM 界面显示查找设备信息,如图 4 所示:

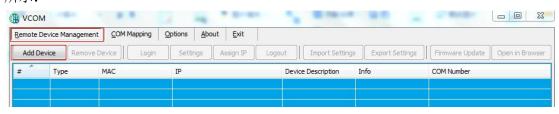


图 1

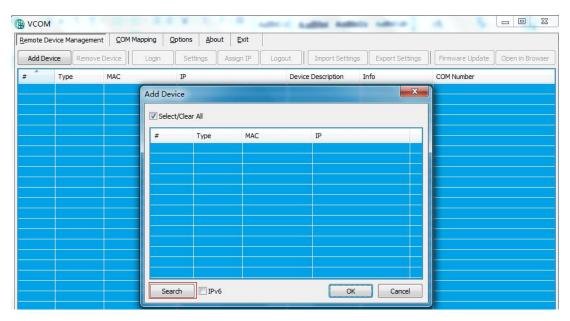
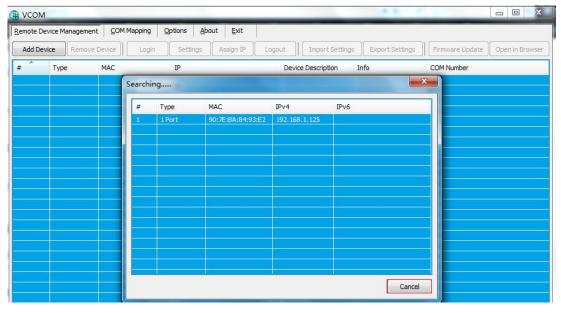


图 2



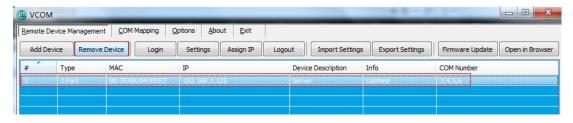

图 3

图 4

6.1.2 删除串口设备信息

在软件 "VCOM"中,首先选中设备信息,再选择 remote devices Management 界面中,点击 "Remove Devive"即可删除设备信息,如下图所示:

6.1.3 登陆设备

在软件"VCOM"中,选择 remote devices Management 界面中,点击"Login" 按钮弹出如下图 1,输入登陆密码即可完成登陆;登录成功后显示如下图 2。



图 1

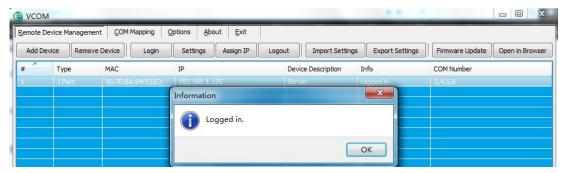
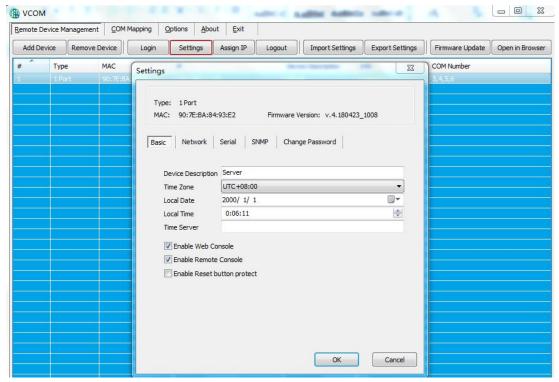
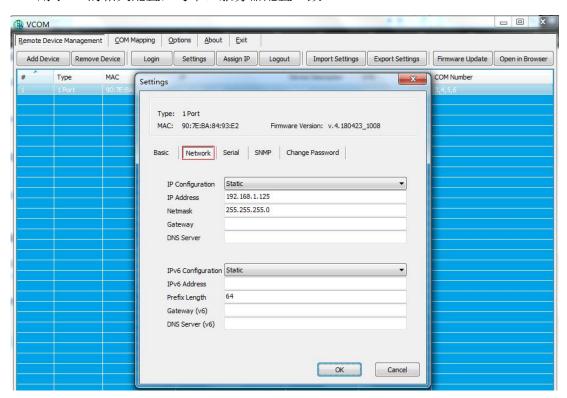


图 2

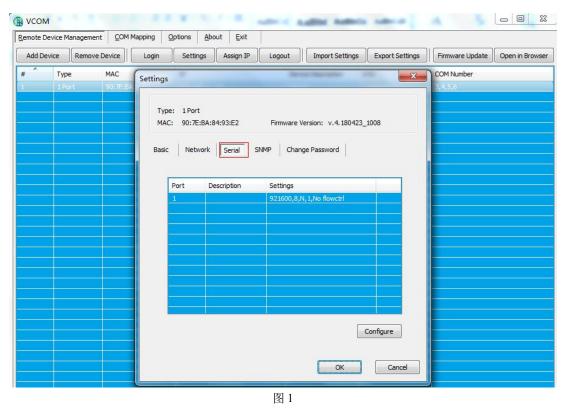

6.1.4 配置信息

在完成设备登陆后,可点击"Setting"按钮弹出界面如下图所示

6.1.4.1 Basic


显示设备基本信息,保持如下默认状态即可。

6.1.4.2 Network


用于 IP 的相关配置,与串口服务器配置一致。

6.1.4.3 Serial

用于端口的基本信息配置如图 1,双击所选串口的"Settings"的对应项或者选择对应串口后点击"Configure"按钮即可打开配置界面如图 2

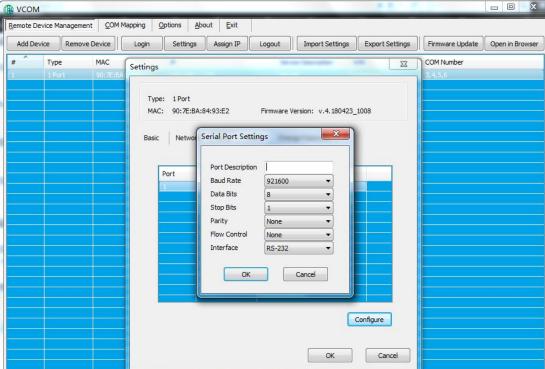
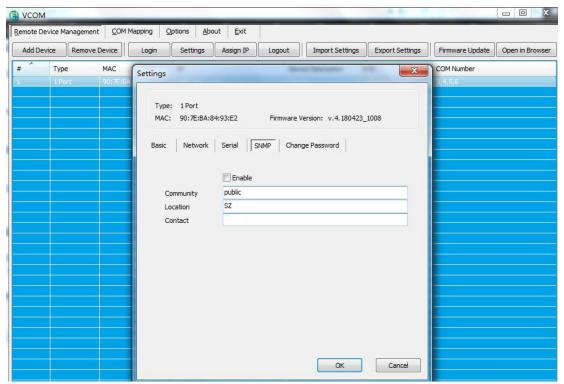
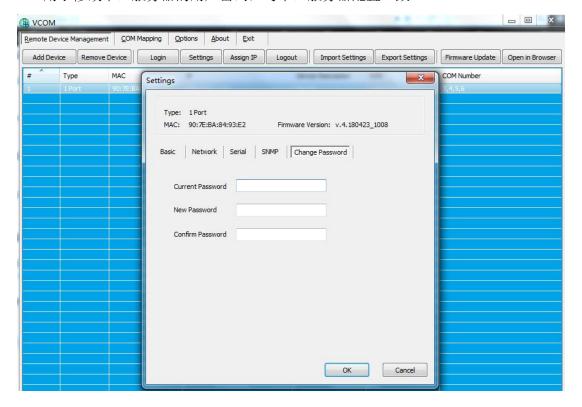
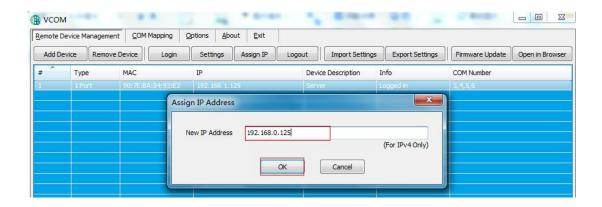



图 2

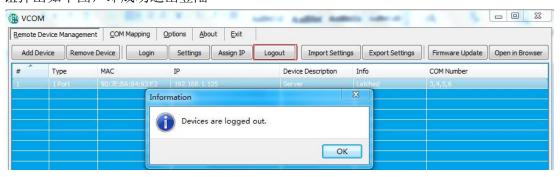
6.1.4.4 SNMP


用于启用 SNMP 管理功能,与串口服务器配置一致。

6.1.4.5 Change Password


用于修改串口服务器的用户密码,与串口服务器配置一致。

6.1.5 更改IP


在软件"VCOM"中,选择 remote devices Management 界面中,点击"Assign IP" 按钮弹出如下图,即可重新设置串口服务器 IP 地址(在更改 IP 之前需要进行 login 操作)

6.1.6 退出登陆

在软件"VCOM"中,选择 remote devices Management 界面中,点击"Logout" 按钮弹出如下图,即成功退出登陆

6.1.7 导入配置

在软件 "VCOM"中,设备登陆成功后,选择 remote devices Management 界面中,选择 "Import Settings" 按钮,弹出界面如下图 1;后点击"Browse"选择已保存或导出的配置文件出图 2,点击"OK"弹出界面如图 3;点击"OK"后即可等待导入配置成功

图 2

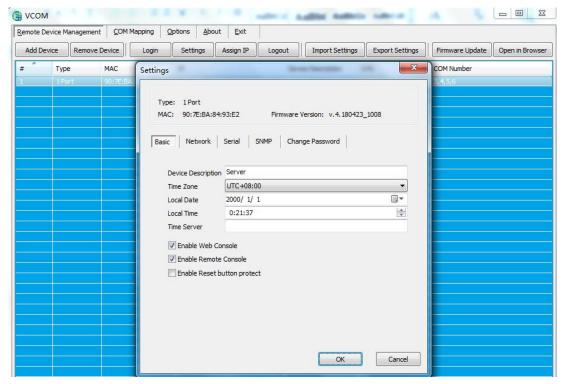


图 3

6.1.8 导出配置

在软件 "VCOM"中,设备登陆成功后,选择 remote devices Management 界面中,选择 "Export Settings"按钮,弹出界面如下图 1;后点击"Browse"选择已保存或导出的配置文件出图 2,点击"OK"后即可等待导出配置成功;如图 3 所示

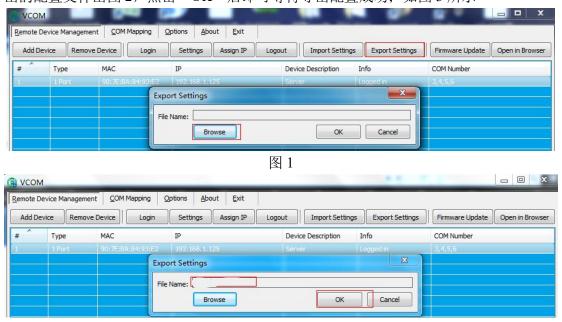


图 2

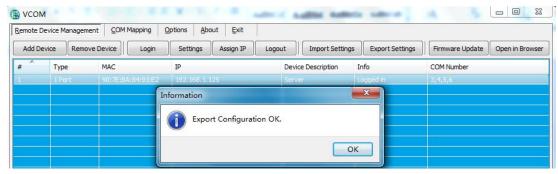
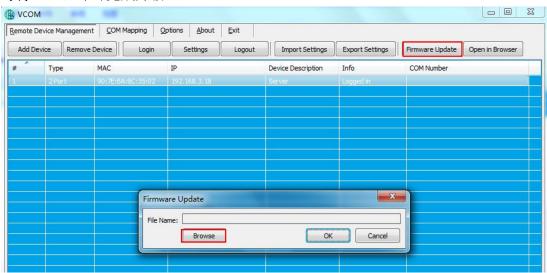



图 3

6.1.9 文件升级

在软件 "VCOM"中,设备登陆成功后,选择 remote devices Management 界面中,点击 "Firmware Update" 按钮弹出如下图,点击 "Browse" 选择更新文件,点击 "OK",等待 240s,即可完成升级。

6.1.10 跳转网页登录

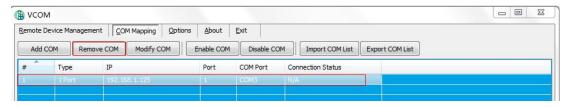
在软件"VCOM"中,选择 remote devices Management 界面中,点击"Open in Browser",即可通过 IE 浏览器进入网页登录界面。

6.2 COM Mapping

6.2.1 创建虚拟串口

1、在软件"VCOM"中,选择 COM Mapping—Add COM, 弹出"Add Device"窗口, 如下图

2、出现"Add Device"窗口,选中设备后,点击"ok"


3、之后会弹出如下图界面,即创建好对应的虚拟串口

6.2.2 删除虚拟串口

在软件"VCOM"中,首先选中所需要删除的虚拟串口,再选择 COM Mapping 界面中,点击"Remove COM"即可删除虚拟串口,如下图所示

6.2.3 修改虚拟串口

在软件"VCOM"中,首先选中所需要删除的虚拟串口,再选择 COM Mapping 界面中,点击"Modify COM"弹出界面如下图 1,后选中"COM6"即可将 Port1对应"COM2"修改为"COM6",如图 2 所示

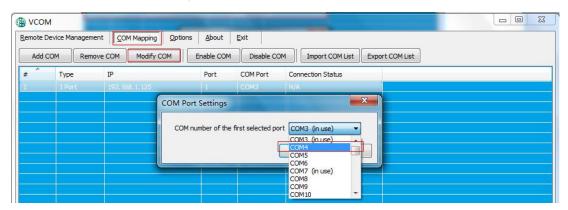
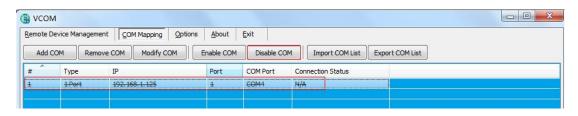


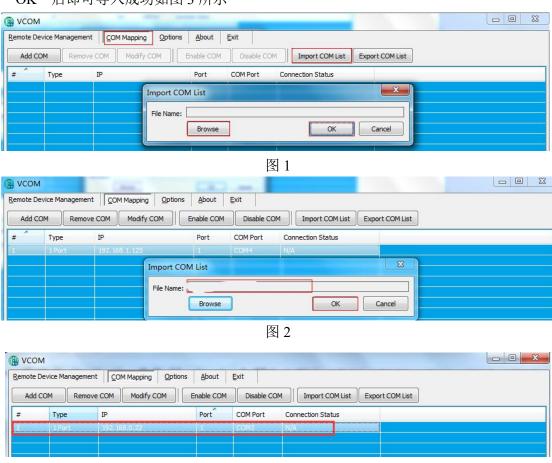
图 1

图 2

6.2.4 启用虚拟串口


在软件"VCOM"中,首先选中所需要禁用的虚拟串口,再选择 COM Mapping 界面中,点击"Enable COM"即可禁用对应的虚拟串口,如下图所示

6.2.5 禁用虚拟串口


在软件"VCOM"中,首先选中所需要禁用的虚拟串口,再选择 COM Mapping 界面中,点击"Disable COM"即可禁用对应的虚拟串口,如下图所示

6.2.6 导入虚拟串口列表

在软件"VCOM"中,选择 COM Mapping 界面中,点击"Import COM List"弹出界面如下图 1 所示,点击"Browse"后,选择已保存的虚拟串口配置信息如图 2,点击"OK"后即可导入成功如图 3 所示

6.2.7 导出虚拟串口列表

软件 "VCOM"中,选择 COM Mapping 界面中,点击 "Export COM List"弹出界面如下图 1 所示,点击 "Browse"后,选择要保存的虚拟串口配置信息路径如图 2,点击 "OK"后即可导出成功如图 3 所示

图 3

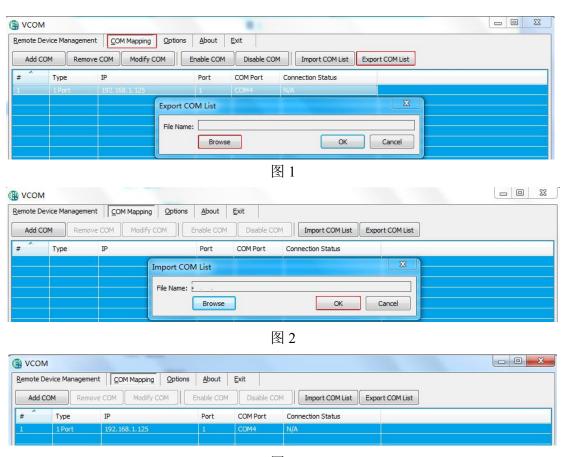
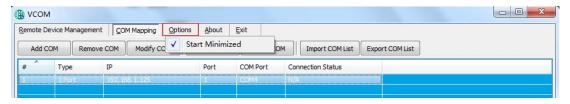



图 3

6.3 Options

选择开启 VCOM 软件时,该软件是直接打开,还是以最小化打开于任务栏;该软件默认情况下是以最小化打开于任务栏,配置如下图所示

6.4 About

点击"About"按钮即可查看软件版本信息如下图所示

6.5 Exit

点击"Exit"按钮即可退出软件